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Entry flow in a channel. Part 2 

By S. D. R. WILSON 
Department of Mathematics, University of Manchester 

(Received G August 1970) 

This paper complements an earlier paper by Van Dyke which has appeared 
under the same title. The problem of channel entry flow is re-examined and the 
early work is found to be formally incorrect. The techniques of modern boundary- 
layer theory are used to examine the region near the entrance. Various inlet 
conditions are considered and it is found that the usual condition of uniform 
entry velocity causes the intrusion of fractiond powers of the Reynolds number 
into the expansions. The most satisfactory model is that of uniform flow into 
an infinite cascade of parallel plates. 

The non-uniformity of the expansions at  large downstream distances was 
studied in Van Dyke’s paper and is not dealt with here, except to show that it 
may be treated separately. 

1. Introduction 
This paper is intended to be read together with a paper by Van Dyke (1970) 

which has already appeared under the same title; we here report complementary 
aspects of an independent investigation of the same problem. The problem is 
that of laminar, incompressible entry flow in a plane channel, and the object of 
both investigations was to review critically the early work of Schlichting and 
others in the light of modern boundary-layer theory. 

In  Van Dyke’s paper, hereafter referred to as ‘E 1 ’, the historical background 
is described, and the essential physics of the situation elucidated. The argument 
is presented largely in physical terms. The main objectives of the present paper 
are to present the criticism of the early work from a more mathematical view- 
point, and to analyse the boundary-layer structure in greater detail for the 
various inlet conditions that have been considered. 

The way in which the boundary layers eventually merge to form the ultimate 
parabolic velocity distribution was also considered in E 1, and the important 
conclusion was drawn, that it is in this region, rather than the entry, that 
Schlichting’s analysis is relevant. This will not be studied here, except to show 
that it constitutes a (mathematically) separate question. 

so 2 
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2. Formulation 
The notation is that of E l .  Lengths are referred to the half-width a of the 

channel, and velocities to the free-stream speed U .  The Reynolds number R is 
UaIv. Then the dimensionless stream function $ satisfies 

The channel walls are a t  y = k 1 for x: 0 and the boundary conditions there are 

$(G i: 1) = k 1, $&, * 1) = 0. 12-21 

Various inlet conditions will be considered. On the assumption of uniform 
velocity at  the channel entrance we have 

$=y,  $ x = o  at x = o .  (2.3) 

These boundary conditions, although somewhat artificial, have been widely 
used, in particular by Schlichting (1960), and by Atkinson & Goldstein in their 
work on the circular pipe (Goldstein 1965, p. 305). As noted in E l ,  this intro- 
duces weak vorticity, of order R-3, into the inviscid core and is responsible for 
the intrusion of various fractional powers of R into the expansions. 

Some improvement can be gained by assuming that the vorticity is zero a t  
x = o :  

$ = y, $xx = 0 at  x = 0. (2.4) 

Now the inviscid flow is irrotational but (as we shall see) there is a singularity 
in the inviscid speed on the line x = 0, due to the suppression of upstream influence 
of the plates. 

No doubt the most realistic tractable model is that of an infinite cascade of 
parallel plates, as described in E 1, 3 2. No conditions are imposed at  x = 0 and 
instead we have 

+(x, k 1) = 1, $&E, f 1) = 0 for x < 0 (2.5) 

and $ ~ y  as x+--oo. 

Again the inviscid flow is irrotational but now it is also free of singularities. 
The boundary-value problems arising from these different ideas will be solved 

together in the next section. The aim is to construct asymptotic expansions for 
large R, and four distinct regions (see figure 1) are found as shown in E 1. We 
shall be concerned with regions I and 11, the inviscid core and boundary layer. 

This investigation can proceed independently of the other two regions. The 
leading edge region 0 is analytically intractable, and the uncertainty about the 
details of the flow there is reflected in the appearance in the boundary-layer 
solution of undetermined constants multiplying eigensolutions. However, the 
structure of the boundary-layer expansion can be found readily enough, and it 
will turn out that the formal difficulties prevent the solution being carried to the 
point where the first of the constants makes its appearance. 
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More important is the non-uniformity of the boundary-layer expansion as 
x -+ co (region 111). The boundary layers meet when x = O(R) and writing 5 = x/R 
yields equation (2.6) of E 1 : 

The ‘initial’ conditions, a t  5 = 0, are found by letting x -+ co in the full inviscid 
solution, and it will not be necessary to match backwards (Van Dyke 1964, 
p. 94). On the other hand the inviscid equations are elliptic, but the missing 

R-’  R0 I<‘ 

FIGURE 1. Sketch of the co-ordinate system and the asymptotically 
distinct regions in the channel. 

boundary condition (at x = a) is essentially that the solution be matchable, 
which is enough to rule out exponentially large solutions. This transition is 
considered in detail in E 1. The further transition, from region I11 to the fully 
developed flow, results in an eigenvalue problem first considered by Schlichting, 
and in more detail by Wilson (1969). 

The problem to be solved here, then, consists of the inviscid equation 

with the condition that the normal velocity vanish on the walls, and the boundary- 
layer equation (for the wall y = - 1) 

where Y = Ri(@ + 1) and g = Rh(y + l) ,  with the conditions Y = Yc = 0 on 5 = 0. 
It is convenient at  this point to return to the discussion of the early work on 

this problem. Schlichting’s solution proceeds as follows. The expansion for the 
boundary layer has the form 
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where 7 is the usual similarity variable c/(2x)4 and the f n  are functions to be 
determined. This series is substituted into the boundary-layer equation (2.8). 
The fluid in the inviscid core is accelerated and this is allowed for by means of 
the expansion + = Y [ 1 + Kn(x/X)+) , (2.10) 

n = l  

where the K ,  are constants found essentially by matching with (2.9). However 
it is apparent that the terms of (2.10) do not satisfy the appropriate equation 
(2.7) (except for the first). The essential point is that (2.10) is intended to be an 
expansion for R + co with x fixed, not for small x with R fixed. It would be more 
in the spirit of Schlichting's work to regard these expansions as intended for 
region I11 for small 5 as suggested by the use of the variable x/R. The resulting 
boundary-value problem, namely (2.6) with (2.2), is indeed the one posed by 
Schlichting, as noted in E 1, but here the inviscid core has disappeared and (2.10) 
must be abandoned. 

It is illuminating to examine these ideas a little further in their original con- 
text. The displacement thickness 6(x) may be defined by 

/;(U-u)dy = U6, 

where u is the streamwise velocity and U is the average velocity in the inviscid 
core. Using the continuity equation and noting that U ( 0 )  = 1, we obtain 

U(x) = 1+6+62+ .... 
The next step is to assume that 6 is proportional to (x/R)* by analogy with the 

Blasius solution, and this suggests the form of (2.10). 
This result, although correct, is inappropriate ; the boundary-layer solution 

must match not into the average inviscid speed but into the speed a t  the edge of 
the boundary layer, which is not the same. The variations in second-order 
inviscid speed cannot be ignored when matching with boundary-layer terms of 
the same order. 

3. The boundary-layer calculation 
Whichever of the inlet conditions is adopted, the hst-order inviscid solution 

is simply @ = y, and hence the first-order boundary-layer solution will be the 
usual Blasius solution. Writing Y = (2x)4f1(7) with 7 = </(2x)& gives 

f? +j;f; + fly: = 0 (3.1) 

in the usual way. As q -+ co we havef, N 7 - /3 + exponentially small terms, where 
p = 1.21678. The flow due to the displacement thickness is represented by the 
second term in the inviscid expansion, 

@ = y+R-&@,+ ..., 
where @z satisfies 

a 
-V'CT2@, = 0 
ax 
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For the infinite cascade model the equation can be integrated and the arbitrary 
function of y identified (as zero) by letting x -+ - co. In  the other two cases this 
is not possible and instead there are two conditions at  x = 0. We now deal with 
the three cases separately. 

(i) Infinite cascade 

The boundary conditions are (2.5). This problem is most conveniently solved by 
means of generalized functions and tables of the relevant Fourier transforms are 
given in Gel’fand & Shilov (1964). The solution is 

dcr . 
sinh a (3.3) 

To calculate the second-order boundary layer it is necessary to estimate @z 
when y is near - 1.  We find 

(3.4) 
joa, sin ax  --$cos ax 

@2 = - /3~*+p(8n)$(y+1) __ (coth a - 1) da, 

P m  

where the integral J a-:(sin ax - cos ax) dx = O 
0 

has been subtracted to give an absolutely convergent integral. 
The second term in (3.4) gives the inviscid speed to which the second-order 

boundary layer must match. The absence of singularities in it indicates that the 
expansion will proceed in the usual way. Rewriting (2.8) with x and 7 as inde- 
pendent variables, inserting the expansion 

Y = (2x)*f1(7) + R-*g(x, 7) + . . . 
and retaining terms up to order R-* gives 

Y,,,, +.fig,,, + 2f ;  Yq, +fig, + 2x(Egx -.f; Y,,x) = 0- (3.5) 

The boundary conditions are g = g, = 0 at 7 = 0 and g - yF(x)  as 7 + CO, 

where P(x )  is the inviscid speed multiplied by ( 2 x ) i :  

It is possible to obtain a solution for small x by expanding g and F in power 
series : 

m 

g(x, 7) = x* c xnY,(r). (3.8) 
0 

The coefficients an are obt,ained in terms of an integral (which will be referred 
t o  again) 

I, = SmtY(coth t - 1) dt 
0 
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where g is the Riemann c-function. The integral for a,, diverges but may be 
obtained in the generalized sense. We have 

en a, = -I,-&, 
n! (3.9) 

where ev,, = 1 if n = 1,  2,  5, 6, ..., and - 1  i fn  = 0, 3, 4, 7, 8, .... 
The functions g, satisfy the equation 

(3.10) 
a 3  d2 d (-$+~lw+ (1 - 2n)f’- + f I -  + (1 + 2n)f’l’ 

lay2 Idy 

It may be shown that four independent solutions of this equation con be 
found having, as y --f co, the asymptotic forms 1, y, ?fn+l, exponentially small. 
An exception is the case n = 0, when the third solution has the form y log y. The 
boundary condition a t  infinity is 

gA(co) = $pn-aan (3.11) 

and this serves to rule out the third solution in each case (including 72 = 0). 
Some numerical integrations have been carried out and the results will be 
discussed at  the end of the next section. 

It might be expected that the power series (3.7) has only a finite radius of 
convergence; and it may be shown that as n --f co, a, = 0(2-n),  which indicates 
that this radius is 2. Arepresentation of the solution for general x,  from which the 
behaviour as x + co may be deduced, will now be given. A useful preliminary is 
to obtain the asymptotic expansion of F(x)  as x + 00. This is 

F(x )  N -pX+O(x-l). (3.12) 

The boundary-layer equation (3.5) may be integrated once to give 

QTVV +fl gvq +f; g7 + 2 x m z  -f; 9,z) = F - 2xF‘. (3.13) 

The Mellin transform g(s, v), defined by 

@(s, y) = p ( x ,  7) xG-ld.Z 
0 

must satisfy L,{@} = (2s  + 1) P ( s ) ,  
where L, is the operator 

(3.14) 

and P(s)  is the Mellin transforni of F(x) .  
An examination of the series (3.7) and (3.12) shows that the Mellin transform 

of F ( x )  does not converge, but exists only in the generalized sense. In fact the 
right-hand side of (3.13) has a Mellin transform, and P(s)  may be defined by 
analytic continuation as indicated in (3.14). The main difficulty is in the choice 
of contour for the inverse transform 
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for which one would normally choose c to lie in the region of convergence of the 
transform. 

It is possible to avoid this difficulty and obtain results in terms of ordinary 
functions by subtracting from P(z) the leading term in its power series, making 
use of the linearity of (3.5). The resulting function, Fl(x) say, has an integral 
representation analogous to (3.6) : 

Som sin ax - cos ax + 1 F1(x) = */37l-tx-l (coth a - 1) da. 
a+ 

(3.15) 

This has a Mellin transform 

Pl(s) = /3~-42~+4sin&nsr(s+&) r(-+ps), (3.16) 

which converges in the strip - 8 < Re (s) < - 1. 
Now let GJ7) be the solution of 

Ls(g") = 2s+ 1 (3.17) 

which satisfies G,(O) = Gi(0) = 0 and G;(m) = 1. This is well defined except a t  
eigenvalues. Then 

and inverting the transform, we have 

g"(s, 7) = GS(7) 4(4 

(3.18) 

where - # < c < - 1. The singularities of the integrand are the poles of pl, which 
correspond to forced terms in the solution, and the poles of Gs, which correspond 
to eigensolutions. (We assume that Gs has no other singularities). 

The poles Pl(s) consist of two groups, a t  s = - #, - g, - f, . . ., corresponding to 
the power series of F1(x) for small x, and at s = - 1, - 8, 1, 3, 5,  ... etc., corre- 
sponding to the asymptotic expansion of Fl(x) for large x. 

By completing the contour with a large left-hand semicircle the power series 
solution (3.7) and (3.8) is recovered. By shifting the contour to  the right an 
asymptotic solution for large x is obtained; in this case the poles of G, must be 
accounted for. These are all real and positive (Libby & Pox 1963); the first few 
are a t  s = *,1*387,2.314,3.258. To determine the multiple of each eigensolution 
it is necessary to evaluate the residues of G8(q) at its poles; this involves a study 
of the equation adjoint to (3.14) and would in general require substantial 
numerical work. However, the first eigensolution, for which s = 4, is known, (it 
is 7f; -fl), and an analytic solution is possible. 

G,(q) satisfies (3.17); to examine the solution near s = 4, we put s = 4 + E  and 

Gs(7) = e - l w ;  -f1) + ho(7) +%(7) + - - * 9 (3.19) 

where k is a constant, to be determined. The coefficient of s-l satisfies the homo- 
geneous equation Ls(G4) = 0 and homogeneous boundary conditions. Next, the 
function ho satisfies 

Li(h6) = 2(1+ k.f'), (3.20) 

with ho(0) = hh(0) = 0, h'(oo) = 1. 
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As y + 00, fl O+AO-2exp ( - -&O2) ,  where A = 0.331, 8 = y-P, and the 

h;:+@h6+2hh = 2, (3.21) 
asymptotic form of (3.20) is 

where the neglected terms are assumed to be exponentially small. Thus 

hh+Oh, = O2+BO+C 

and so h, 8 + B + (c - 1) (0-1 + 0-3 + . . .). (3.22) 

To define h, properly we must, therefore, demand hh + 1 exponentially, so that 
C = 1. NOW 

C = lim {hh + Bh, - B2 - SO} 
e--, co 

= lim {02 - Oh: - ( 6 2 -  I )  hh} 

= l im(f~- f lh~-  (fi- 1)h;) 

Using (3.20) we find C = 

2 log (A/a)  + k, 

where a = f’i(0). Hence k = 1.70. The contribution from the pole at  s = 8 is there- 
fore 

Id?(&) (qf; -fl, = - a@<( - Q) x-qyf -f). (3.23) 

This may be compared with the asymptotic expansion of the forced solution. 
An extraneous term of order XS has been introduced by the switch from F(x) 
to Fl(x) described above, and if this is corrected for, the first two terms are 

P(2x)g {G-l(q) xi3 ++zx-SGl(q) + . . .}. (3.24) 

Thus we have shown that the dominant term at infinity is the forced term of 
order x, followed by an eigensolution of order x-9, (3.23), and then by the O(x-l) 
forced term in (3.24). Then comes the eigensolution of order x-1.3*’; the numerical 
coefficient has not been determined here. (The procedure described above for 
the calculation of the constant k appears not to work for higher eigenvalues, and 
a numerical calculation would be necessary.) 

(ii) lrrotational entry 

The boundary conditions are (2.4) and the solution for $3 is 

p J sin ax sinh ay k2=m a3 sinha da. (3.25) 

The analysis proceeds on much the same lines as the cascade problem and we 
shall give only an outline of the distinguishing features, which are concerned 
with the flow near x = 0. 
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The integral in (3.25) may be estimated near y = - 1 in a similar manner to 
(3.3)) this time using the result 

/oma-t sin ax cia = (7T/2x)g. 

P sin ax 
$2 = -pxi+-(y+ 1)[ -cothador.+ ... We find 

(2nP 0 a+ 

I = - P x " ~ ( Y + l ) ( ~ + c b , x .  1 "  +..., 
1 

where b, = 0 if n is even, and if n is odd, 

( -  1)gcn-a 
b, = n! In-+. 

(3.26) 

n 

-6 
-3 

0 
3 
1 
2 
3 
4 
5 

g::(O) 
- 0.605 

0 
0.498 
1.172 
2.041 
3.178 
4.145 
5.012 
5.81 1 

An 
2.404 
0.441 

.0.860 
1.120 
2.755 
4.788 
6.264 
7.448 
8.449 

TABLE 1. Results of numerical integration of (3.10). As 7 4 co, gn N 7 +An. The entries for 
n = -6 and n = 9 are needed for (3.24), the remainder for (3.8) and (3.27) 

Again the integral in (3.25) is uniformly convergent and there is no singularity in 
the inviscid speed (a$.,/ay), except a t  x = 0, a fact which reflects the artificial 
imposition of a boundary condition there. The second-order boundary layer may 
again be obtained as an infinite series 

The functions h, (v = -9, 1, 2, 3, ...) satisfy the same equation, (3.10)) with n 
replaced by v. Again the four independent solutions have the asymptotic forms 
1, q, q2v+1, exponentially small, except when v = -8,  in which case the third 
solution behaves like log q. The boundary conditions at infinity are 

hl_g(a) = P/24, 

hL(a3) = 293, 

and while this rules out the third solution in general there is no immediate reason 
to suppose it will in the case v = -9. However, it  is not difficult to see that if 
the logarithmic solutions were present it would be required, for the third-order 
inviscid flow, to find a potential function which behaves like logy on the x axis. 
Such a function, if it exists, would be physically unrealistic, highly oscillatory 
and presumably 'unmatchable ' (cf. Goldstein 1960, p. 139). Accordingly this 
solution is required to be absent. 
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Note that when n is even, b, = 0 and so h, = 0 because n is not an eigenvalue 
(Van Dyke 1964, p. 132). 

It is clear that the h, differ from the corresponding g, only by a constant of 
proportionality. For the purposes of numerical integration they may all be 
normalized so that h, - 7 +A, + small terms and the first few constants are 
given in table 1. It is worth remarking that the numerical integration in the case 
v = -4 would not be particularly straightforward were it not possible to in- 
tegrate the equation twice immediately in this case. 

(iii) Uniform entry 

Using the conditions (2.3), we find 

da. (3.28) 

As in the previous case the inviscid speed is singular at  x = 0 but this is now 
less important than the singularity at y = - 1 (cf. E 1, $4). The integral for 
8$21ay is not uniformly convergent and some care is needed to estimate it. 
The result is, near y = - 1 

$, = -px*+p{2(y+ l ) ) ~ + O ( y +  l), (3.29) 

and, as noted in E 1, requires that the next term in the boundary-layer expansion 
shall be of relative order R-$, and that the solution there must behave like 74 
at infinity. The thickness of the second-order boundary layer is proportional to 
xf. If the detailed calculations are carried out up to this point it is possible to 
spot the general term of both the boundary layer and inviscid expansions and 
we confine ourselves to presenting the result. To avoid clumsy superscripts 
write r, = 2-,, CT, = 1 - 7,. The inviscid expansion is 

9 = y + R-4$2 + RP%$~ + . . . + R-'+n+l + . . . (3.30) 

and the boundary-layer expansion is 

R-4Y' = $ + 1 = R-4(2~)4 f l (7)  + R-2x$f2(?;l) + . . . + R-".x'nf,(7) + . . . . (3.31) 

Each f,, except fi, satisfies a homogeneous equation, which is (3.10) with the 
coe%cients & - n and 4 + n replaced by CT, and r, respectively. The four inde- 
pendent solutions have the asymptotic forms 1, 7, q 2 T n ,  exponentially small; 
and matching rules out the second solution in this case. At infinity, then, we have 

f, - A,y27n+Bn+ .... 
The solution for the general term of (3.30) is 

O' 1 - cos ax sinh ay 
r(a,) cos ( ~ T ~ T )  a ~ n f l  sinha 

act. s 7, Bn 
@n+1= - (3.32) 

The constants B, are found by numerical integration of (3.10) with the new 
boundary conditions, and the results are given in table 2. This actually gives 
B,/A,; the constants A, are found from the matching process, which gives 

A,+1 = -B,sec(Q~,n). 
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An inhi te  sequence of powers of R is inserted between R-4 and R-I; a patho- 
logical situation, no doubt, but there is some rarity value in an asymptotic 
expansion of which the general term can be written down ! 

Finally, we note the skin-friction coefficients in the three cases. Defining 
cf = r /&U2 in the usual way we find: 

(i) the cascade model, 
1 -  

Cf = - f ' i(0) + ~ E xmg;(o) + . . . ; (2Rx)4 R x ~  0 

(ii) the irrotational entry 

1 1 1 *  
f'i(0) + -h" (0) + - c X % i ( O )  + ... ; Rx -!I RxB 

Cf = - 
(2Rx)t  

(iii) uniform entry 

The values of the various derivatives may be found from tables 1 and 2. 

a n  

- 0.100 
- 0.525 
- 0.751 
- 0.871 
- 0.935 
- 0.967 

fm 
0.229 
0.116 
0.060 
0.031 
0.015 
0.008 

TABLE 2. Results of numerical integration of (3.10) for uniform entry. 
AS r -+ CO, f, N @ 7 n + a n +  ..., (7, = 2-") 

Figure 2 shows the variation of the second-order correction to the skin- 
friction coefficient with x for the cascade model. For small x this is given by the 

series x-8 xltgL(0) truncated a t  3, 4 and 5 terms. For large x the asymptotic 

solution derived from (3.23) and (3.24) is used. 
The corresponding series for the irrotational entry model will have similar 

accuracy if truncated a t  5 terms. We may note that the apparently more singular 
term in the skin-friction coefficient (Rx)-l hT4( 0) is actually absent because 

m 

0 

h"(0) = 0. 

4. Concluding remarks 
The boundary-layer expansion has been calculated as far as terms of order 

R-I for various inlet conditions. It appears that the most commonly studied 
model (uniform entry) is the least satisfactory from this point of view; and the 
most suitable model (the cascade) has received little attention until the present 
work and that of Van Dyke. 



798 8. D. R. Wilson 

Attention has been mostly confined to the region in which x is O(1). The 
early work of Schlichting and others has been shown to be incorrectly applied to  
this region, and is in fact a correct formulation of the problem in the region where 
x is OfR). 

The matching of the boundary layer and the inviscid flow is carried out in 
the case of uniform entry with only algebraically small error; this is unusual in 
problems of this type and is no doubt the result of the presence of vorticity in- 
duced in the core by the inlet conditions. 

0 1 .o 2.0 3.0 4.0 

FIGURE 2. Variation of the second-order correction to skin friction with x for the cascade 
model, The curves for small a are obtained from the series (3.8) summed to 3 , 4  and 5 terms. 
Also shown is the asymptotic solution for large 2. This is obtained from (3.23) and (3.24) 
and the curves show 2 and 3 terms. The asymptote Re, = 2-02 is indicated. 

A small circular region of size R-l surrounding the leading edge has been 
ignored. It seems likely that this will not affect the expansions until O(R-l) is 
reached (at worst). (The effect of the corner is that the boundary condition of (3.2) 
must be abandoned within a distance O(R-l) of x = 0, but this will have only 
local effects because the equation is elliptic.) At any rate it is reasonable to pursue 
the boundary-layer expansion, disregarding eigensolutions wherever possible, 
because the expansions in the various regions must be mutually consistent. 

Finally, we note that the analysis of 9 3 (i) may be used to throw some light 
on a somewhat different problem. If the flow of a stream over a semi-infinite flat 
plate is slightly disturbed, so that U ( x )  = U, + U,(x) for x > 0 where I U,l < 0, and 
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U, -+ 0 as J: -+ 00 then the asymptotic Blasius solution for large x has the effective 
origin at x = - 1, where 

m 
1 = 2kU;’S U,(x)dx. 

0 

This result offers a parallel to Stewartson’s (1957) equation for the leading- 
edge shift in the case where U = U, and the velocity profile is given a t  x = 0, 
though (4.1) requires that the disturbance to the Blasius solution should be small. 

The author owes a considerable debt t o  Dr A. IF. Jones, whose work this partly 
is. The manuscript was read by Mr E. J. Watson, who made several useful 
comments, and the computations were kindly carried out by Mr J. Rawlinson. 
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